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Outline

• Objectives: Forecasting MMAX: why do we want to do this?

• Methods: Extreme value estimators 

• Test datasets: Induced seismicity in Oklahoma, West Texas, and sequences from around the world 
(n ≥ 80).

• Performance metrics: How do we define how well a model is performing?

• Results 

• Towards an empirically-constrained approach: combining models to produce a strategy based on 
observed performance. 



Motivation

Our objective is to forecast MMAX, the largest event that is expected to occur during (or after) operations at a given 
site

• MMAX (the largest event) controls the seismic hazard associated with a given operation. 

• Maximum magnitude is of particular importance for regulators… 



Motivation

Need for transparent, robust and extensive testing:

• Build confidence in model performance with regulators/operators

• Establish whether models can be generalized well (or if not, what types of situation lead to better or worse 
model performance)

• Identify common (or different) behaviours/trends between different modelling methods, perhaps leading to a 
more holistic strategy

• Performance assessment can feed back into physical understanding of induced seismicity



Methods

A range of methods have been used to forecast induced seismicity magnitudes:

• Numerical geomechanical simulations… 

• Statistics-based methods – quick to parameterize and operate in real time:

• Scaling between seismicity rates and injection parameters… 

• Machine learning…

• Extreme value theory… 



Methods
Upper limit and record-breaking event theory (Cooke, 1979). 

• Applied in PSHA for tectonic earthquakes (e.g., Kijko, 2004)

• Applied to mining-induced seismicity by Mendecki (2016)

• Mo
i are the observed event magnitudes, ordered from smallest to largest (so Mo

n is the largest observed 
event magnitude).

• This theory is not specific to earthquake magnitudes. We can alternatively use earthquake moment or 
potency (P = MO / μ ) instead.

• Hereafter, we use MUL_MM for magnitude-based calculations, and MUL_MO when using potencies
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Methods
Upper limit and record-breaking event theory (Cooke, 1979). 

• Alternatively, we can estimate the maximum expected magnitude jump (or increment). 

• We refer to this estimate as the “jump-limited” case:

• ΔMo
i are the observed magnitudes jumps (increases over all previous events), ordered from smallest to 

largest (so ΔMo
n is the largest observed event magnitude jump).

MJL: 𝑀𝐽𝐿 = 𝑀𝑀𝐴𝑋
𝑂 + Δ𝑀𝑀𝐴𝑋
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Datasets
Oklahoma

• Event catalogue from Park et al. (2022) 
using PhaseNet: MC ≈ 1.0. 

• 20 x 20 km boxes around all sequences 
around M 4+ events [24 cases].

• An additional 24 boxes mapped at random 
which contain at least 500 events but no M
3.5 or above. 

• Because we want to test how the models 
perform with sequences that don’t generate 
large events.  



Datasets
West Texas

• Event catalogue from TexNet: 
MC ≈ 2.0.

• 20 x 20 km boxes around all 
sequences around M 4+ events 
[11 cases]

• An additional 11 boxes mapped 
at random which contain at 
least 100 events but no M 3.5 
or above. 



Datasets
From Watkins et al. (2023)

• 16 cases: eastern Texas (Azle-Reno, 
Dallas-FW, Irving, Timpson, Venus, Guy-
Greenbrier, Youngstown, Paradox, 
Greeley, Raton Basin, Eagle West, 
Graham, Musreau Lakes, Rongchang, 
Castor, Rubiales. 



Model Performance

We make forecasts in a pseudo-
prospective manner: 

• At a given time, all previous 
events are used to estimate 
MMAX

• If the next window contains 
a new “record-breaking” 
event (MO

MAX) then we 
compare the observed event 
magnitude with the 
modelled values 

Use events prior to 

this time to produce 

forecast for next 

time window

Compare observed 

event magnitude with 

model value 



Model Performance

• In total we have 86 individual sequences, in which a combined total of 331 record breaking events occur. Very 
large dataset for a comprehensive assessment of forecasting performance. 

Performance Metrics:

• RMS error, σRMS: how close are modelled and observed mags?

• Pearson correlation coefficient, r: do the modelled and observed mags fall along a line (not necessarily 1:1), or 
are they randomly scattered? 

• Line of best fit between modelled and observed mags, m: does the best fit line fall along a 1:1 ratio? 

• How many significant underpredictions, NUP: cases where the observed magnitude is more than 0.5 units 
above the forecast value. We want forecasting models that do not underestimate the risk, since we want to 
make conservative decisions. 



Results
• Results for OK/KS:



Results
• Results for west Texas:



Results
• Results for Watkins et al. 

sequences



Results
Upper Limit values using magnitudes

• Generally over-predict.

• Largest misfit between observed and 
modelled values. 

• m >> 1 – line is not 1:1. 

• But correlation is good – it is a line, just 
not where we want it to be. 

• Never under-predicted. A credible upper 
limit that won’t be exceeded. 

Model σRMS r m NUP [%]

MUL_MM 1.84 0.86 1.27 0

MUL_MO 0.41 0.86 0.76 14.2

MJL_MM 0.47 0.81 0.85 7.3

MJL_MO 0.41 0.85 0.78 14.6

MUL_MM



Results
Jump-Limited values using magnitudes

• Fit the shape of the data relatively well (m
~ 1).

• However, they have the largest scatter –
second largest RMS error, and smallest 
correlation coefficients. 

• Seldom create underpredictions 

Model σRMS r m NUP [%]

MUL_MM 1.84 0.86 1.27 0

MUL_MO 0.41 0.86 0.76 14.2

MJL_MM 0.47 0.81 0.85 7.3

MJL_MO 0.41 0.85 0.78 14.6

MJL_MM



Results
Potency-based methods

• Provide the best fit to the data (lowest 
RMS errors).

• Provide the least scatter (highest 
correlation coefficient)

• On occasion, produce significant under-
predictions, which could be an issue. 

• While most results fit along a 1:1 line, 
the handful of underpredictions produce 
a lower best-fit gradient. 

Model σRMS r m NUP [%]

MUL_MM 1.84 0.86 1.27 0

MUL_MO 0.41 0.86 0.76 14.2

MJL_MM 0.47 0.81 0.85 7.3

MJL_MO 0.41 0.85 0.78 14.6

MUL_MO MJL_MO



Towards an empirically-constrained model
• A large number of cases provides a robust and comprehensive testing dataset. 

• We can empirically constrain how each method performs. This constraint can then be used to 
adapt our model (or suite of models) to produce a more useable forecast with more realistic 
expectations. 

• For example, if we had some models that always over-predict, and some models that always 
under-predict, then we can assume that the true magnitude will be somewhere between these 
bounds… 



Towards an empirically-constrained model
• Potency-based models usually provide a good fit to the data, but occasionally under-predict. 

• MUL using magnitudes usually over-predicts, but never under-predicts. 

• Therefore, we should expect the actual MMAX to fall somewhere between the MUL_MM and MJL_MO

values. MUL_MM is the upper bound, MUB, and MJL_MO is the lower bound, MLB.

• How do observed magnitudes distribute between these upper and lower bounds?  



Towards an empirically-constrained model
• We normalise each observed 

MO
MAX event by the MUB and MLB

values at the time the event 
occurred:

𝑀𝑁
𝑂 =

𝑀𝑀𝐴𝑋
𝑂 − 𝑀𝐿𝐵

𝑀𝑈𝐵 − 𝑀𝐿𝐵



Towards an empirically-constrained model

• Behaviour is really consistent between study areas – most cases clustered around 0 (i.e., MOBS
MAX

≈ MLB), but a tail of events reaching towards 1 (i.e., MOBS
MAX = MUB).

• Shifted lognormal distributions seem to fit the data well (red curves): μLN = [- 1.4, -1.41, -1.37], 
σLN = [0.59, 0.43, 0.54], with a shift of δ = -0.2.   



Towards an empirically-constrained model
• Testing using synthetic catalogs. We generate 1,000 random catalogs. 

• N chosen randomly each time (between 500 – 10,000). MMIN chosen randomly each time 
(between 0.5 – 2.5). b is always 1.0. Generate random events from an unbounded G-R 
distribution. 

MJL_MO

MUL_MM



Towards an empirically-constrained model
• Results look a lot like our observations – MUB overpredicts but is a credible upper limit. MLB

generally fits the data well, but occasionally underpredicts. 

• Normalised magnitudes are well fit by a shifted lognormal distribution, with very similar values 
to our observed cases: μLN = -1.4, σLN = 0.6, δ = -0.2. 



Towards an empirically-constrained model
• It looks like this distribution is an inherent result when sampling magnitudes from an 

underlying G-R. 

• We can use this behaviour to produce a probabilistic estimate for the next record-breaking event 
during a sequence. 

• Compute MLB and MUB, and assign probability values to magnitudes between these values: 
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Shifted lognormal with μLN = -1.4, 
σLN = 0.6, δ = -0.2



Towards an empirically-constrained model
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• It looks like this distribution is an inherent result when sampling magnitudes from an 
underlying G-R. 

• We can use this behaviour to produce a probabilistic estimate for the next record-breaking event 
during a sequence. 

• Compute MLB and MUB, and assign probability values to magnitudes between these values: 



Towards an empirically-constrained model
• Demo: Application to PNR-2 – an out of 

sample case that was not used to define 
the probability distribution

• The M 2.8 is well within the forecast 
range, close to the M50 value.

• The M 1.9 event after Stage 6 was not well 
forecast (p = 1 %). 

• Stage 6 has been identified as the time the 
microseismicity changed – switch from HF 
propagation to fault reactivation. 

• Not surprising that HF microseismicity is 
not good for forecasting fault reactivation. 

5 %

50 %

95 %



Conclusions
• MMAX forecasting using extreme value statistics shows significant potential

• We have tested various implementations of this approach across a very large number of case 
studies. We find good correlation between forecast and observed maximum magnitudes

• There are systematic differences in the results produced by different implementations. These 
differences are found in both observed and synthetic datasets. 

• We use these differences to define an empirically-constrained MMAX estimation:

1. Upper-limit estimation based on magnitudes defines the upper bound

2. Jump-limit estimation based on potency defines the “lower” bound

3. Likelihood is estimated from a distribution between these bounds 



Acknowledgements

seisgreen

Bristol and Oxford Passive Seismic

Research Consortium



Thanks!

Any questions, comments or suggestions?

james.verdon@bristol.ac.uk

Bristol and Oxford Passive Seismic

Research Consortium


