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❑ Introduction: 

▪ Post-injection induced seismicity; plausible mechanisms; objectives

❑ Methods: 

▪ Laboratory-scale experiments and field-scale modelling (Pohang EGS).

❑ Results: 

▪ Changes of hydromechanical parameters in laboratory-scale experiments;  

▪ Cross-scale pore pressure change contours; 

▪ Cross-scale temporal change of pore pressure and Coulomb stress;

▪ The 2017 Mw 5.5 Pohang earthquake could have been mitigated.

❑ Conclusion and Discussion: 

▪ Immediate fluid extraction after fluid injection is recommended in most EGS.
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Introduction: Frequent large magnitude earthquakes after injection in EGS
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Introduction: Plausible mechanisms for post-injection earthquakes
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(Mukuhira et al., 2017)

Basel EGS, ML 3.4, 5 hours after injection

r Dt=

Blue: before shut-in

Red: after shut-in 

(Shapiro et al., 1997)

1. Pore pressure diffusion 2. Poroelastic stress 3. Coulomb static stress transfer

▪ Expansion due to further pressure diffusion

▪ More suitable for seismicity before injection

▪ Other mechanisms may also involve in shut-in

ML 3.4 event
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Introduction: Plausible mechanisms for post-injection earthquakes
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Profile view: dipping 60° to the west 

(Segall and Lu, 2016; Ge and Saar, 2021)

1. Pore pressure diffusion 2. Poroelastic stress 3. Coulomb static stress transfer

2D analytical modelling of seismicity induced by fluid injection to porous media

60°

▪ If poroelastic stresses inhibit slip during injection, abrupt 

shut-in can lead to post shut-in spikes in seismicity rate.

▪ Tapering the injection rate mitigates the post shut-in spike 

in seismicity.X1=200 m

t=5 days

=1
s

K

K
 −

Map view: N-S Normal faults

Biot coefficient for coupling

(Bulk modulus)

(Grain modulus)
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Introduction: Plausible mechanisms for post-injection earthquakes
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1. Pore pressure diffusion 2. Poroelastic stress 3. Coulomb static stress transfer

Pohang EGS, Mw 5.5, ~ 2 months after injection

(Ge and Saar, 2021)

▪ Mw 3.2 event is induced by pore pressure diffusion.

▪ Coulomb static stress transfer induced by Mw 3.2 event triggered 

Mw 5.5 earthquake.

(King et al, 1994)

59 Mw > 0.3 

relocated foreshocks

(Lee et al., 2019; Yeo et al., 2020)

Jump up just after Mw 3.2 event 
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Introduction: Plausible mechanisms for post-injection earthquakes
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1. Pore pressure diffusion 2. Poroelastic stress 3. Coulomb static stress transfer

(Boyet et al., 2023)

F1: reactivated during fluid injection

▪ pore pressure diffusion

▪ poroelastic stressing

F2: reactivated during shut-in

▪ pore pressure diffusion

▪ poroelastic relaxing

F3: reactivated during shut-in

▪ pore pressure diffusion

▪ poroelastic stressing

▪ Coulomb static stress transfer

Conceptual model of Basel Enhanced Geothermal System (EGS) 

(Mw 2.95, 5 hours after shut-in)
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▪ Implement fluid extraction/tapering injection during shut-in in lab-scale experiments on faults in representative 
deep geothermal reservoir rocks.

▪ Execute fluid extraction/tapering injection during shut-in through field-scale modelling of Pohang EGS.

▪ Identify the primary mechanisms responsible for post-injection induced seismicity in EGS.

▪ Provide EGS operators with recommendations for optimal shut-in strategies.
9

9

Introduction: Objectives_cross-scale study on shut-in strategies
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Methods: Laboratory-scale experiments and field-scale modelling
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▪ Well-calibrated numerical model for pore pressure diffusion

▪ Well-documented seismicity sequence for Coulomb static stress calculation

▪ Well-controlled and monitored laboratory-

scale experiments on faults in representative 

deep geothermal reservoir rocks.

Laboratory-scale experiments (granitic rocks) Field-scale modelling (Pohang EGS)

Seismic events (not all shown here)

Hydraulic data

(Yeo et al., 2020; Ge and Saar, 2021)

Mw 5.5

Mw 3.2

PX-2
PX-1
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Methods: Design of shut-in strategies in this study
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Spontaneous reduction rate of injection pressure in instant shut-in:

▪ ~0.002 MPa/s in the laboratory-scale experiment 

▪ ~0.003 MPa/s in the field-scale Pohang EGS 

➢ Fluid extraction by fluid depressurization rates at 0.1 and 0.01 MPa/s

➢ Instant shut-in by abruptly setting a zero injection rate

➢ Tapered shut-in by fluid depressurization rate at 0.001 MPa/s
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Methods: Laboratory-scale experiments
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Critical stress state

(Ji et al., 2022)

Matrix

▪ Rock type: Odenwald granite in Germany, representative deep geothermal reservoir rock

▪ Dimensions: 50 mm diameter and 100 mm height

Fault

▪ Inclination angle: 30° to the sample axis

▪ Roughness: ground by sandpaper with a particle size of 30.2 µm

(90%𝜏p)
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Methods: Field-scale modelling
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3rd Stimulation in PX-2

A: main fault with a low-permeability fault core

B: main fault without a low-permeability fault core

(Yeo et al., 2020)

Well-calibrated 3D finite element model for pore pressure diffusion

(M
P

a
)

Date

Pohang EGS
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Results: Changes of hydromechanical parameters in laboratory-scale experiments

▪ Flowback (less net injected volume) tends to reduce the dynamic fault slip velocity and prevent aseismic slip.

▪ Tapered shut-in (more net injected volume) and instant shut-in further increase the fault slip velocity, and 

sustain aseismic slip.
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Results: Cross-scale pore pressure change contours

A: main fault with a low-permeability fault core

B: main fault without a low-permeability fault core
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Laboratory-scale experiments

▪ lab-scale pore pressure diffusion is modelled 

also by finite element modelling (Ji et al., 2020).

▪ same time after injection (60s in high-rate 

flowback)

▪ magnitude of pore pressure change is reduced 

by flowback while it is enhanced by tapered 

shut-in.

Field-scale modelling

▪ at the time of Mw 3.2 event

▪ in Case A, the enhanced diffusion along the 

main fault is due to the low-permeability fault 

core.

▪ magnitude of pore pressure change is reduced 

by flowback while it is enhanced by tapered 

shut-in.
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Results: Cross-scale temporal change of pore pressure and Coulomb stress
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▪ Flowback is safer 

by reducing pore 

pressure change, 

and total Coulomb 

stress change!

3rd Stimulation in PX-2First three stimulations After shut-in in the lab

Seismicity sequence preceding the Mw 3.2 

event is presumed to remain unaltered.
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Results: The 2017 Mw 5.5 Pohang earthquake could have been mitigated
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▪ Significantly reduced exceedance probability of a Mw 5.5 earthquake!

Based on the method introduced in Shapiro et al. (2021)
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Conclusion and Discussion
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(Goebel and Brodsky, 2018)

Highly fractured Basel EGS 

with strong poroelastic effects

▪ Immediate fluid extraction after injection could mitigate post-injection 

induced seismicity in EGS within low-permeability crystalline rocks.

Poroelastic effects is minimal in most EGSs

Soft porous 

reservoir 

rocks

Rigid tight 

crystalline rocks, 

mostly EGS

One exceptional 

EGS, due to highly 

fractured reservoir

Pressure-

dominated

Poroelastic

-dominated

(Boyet et al., 2023)

Shorter 

reach
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