The value of microseismic in practical applications of CCS monitoring

Bettina Goertz-Allmann

GeoREST - induced seismicity workshop Palma, 13. March 2024

Microseismic monitoring of CO₂ storages

- Established early-stage diagnostic of reservoir response to injection
- Seismicity shows injection-induced fluid pathways and stress transfer
 - > Indication of reservoir behavior ahead of the CO_2 front
 - > Detection of potential seal integrity, or well problems, before leakage occurs
- Important risk mitigation tool
 - ➢ Correct association of events to injection operation → requires accurate event depth
 - ➢ Feedback protocol to operation (traffic light system) → requires real-time monitoring

Successful monitoring depends:

- Network geometry
- Sensor type (DAS, geophones..)
- Processing workflow

CCS case studies

In Salah

- Insufficient monitoring network
- High level of seismicity
- Events cannot be located sufficiently

Decatur

- Excellent instrumentation and geophysical monitoring
- High level of seismicity
- Good control on focal depth due to deep geophones

Quest

- Various monitoring setups \rightarrow ideal for comparison
- · Low seismicity, but far-reaching
- Poor depth control, despite high quality network(s)

In Salah, Algeria

- 4 MT CO₂ injection at about 1.9 km depth started in 2004
- Downhole monitoring well but only one geophone at 30 m provided reliable data.
- More than 5000 events grouped in 4 clusters separated by S-P traveltime and azimuth.
- Event location cannot be estimated sufficiently accurate with only one geophone!
- Additional phase arrival (e.g., SPconverted phase) can help to constrain focal depth.

Goertz-Allmann et al. (2014), GJI

The Decatur CCS site, Illinois

- 1 M tons CO₂ injected at 1.9 km depth (2011-2014).
- Borehole & surface sensors.
- Over 4,800 microseismic events located.
- Different waveform signature for reservoir & basement events.
- Deep borehole geophones are ideal for detectability and are crucial for good focal depth estimation.

travel path differs for different event depth

Goertz-Allmann et al. (2017), JGR

The Quest CCS Facility

- 1 M tonnes CO₂ per year into deep saline aquifer at 2 km depth
- Goal of 25 million tonnes of CO₂ over a 25-year period
- 9 Mt since August 2015
- High quality sandstone (~17% porosity) reservoir
- Excellent permeability (~1000mD)

Microseismic monitoring at Quest

Almost ideal monitoring setup!

- Three injection wells
- Downhole array with 8 3C geophones

ENSURE

- DAS cable within central injector
- Surface arrays with 153 nodes arranged in 17 sub-arrays
- All events in the Precambrian basement

events until December 2021

Goertz-Allmann et al. (2022), GHGT

Microseismic monitoring at Quest

- No background seismicity
- First locatable event after 10.5 months
- Magnitudes between
 -2 and 0.8

Microseismic monitoring at Quest

Comparison of various microseismic monitoring solutions highlight benefits and challenges of individual technologies for **detectability** and **locatability**.

Goertz-Allmann et al. (2024), IJGGC

Event locatability:

downhole geophones versus surface beams

Borehole:

- Poor azimuthal coverage
- Trade-off between horizontal position and focal depth

Surface nodes:

Improved azimuthal coverage

 By combining downhole and surface we obtain a reduced uncertainty, no trade-off, ellipsoidal misfit volume

Goertz-Allmann et al. (2024), IJGGC,

Event locatability:

downhole geophones versus surface beams

- Location uncertainties are much reduced (especially for events within the network)
- Still too large depth uncertainty (± 3 km) for unambiguous event association.
- Uncertainties increase with distance from the monitoring well.

Event detectability

Borehole:

ground truth event catalog

• High SNR

Surface nodes:

- Lower SNR
- Array beamforming to enhance SNR
- Noisy traces can distort beamforming result
- Requires advanced preprocessing/ filtering: 2-60
 Hz + spectral subtraction + spatial interpolator

- About 80 % detections with at least one beam
- But: high false detection rate

Event detectability

DAS:

- Higher instrument noise
- Weak P-wave

Baird et al. (2024), EAGE, submitted

 Semblance stacking to detect events

about 50 % of events detected with DAS after advanced processing

Lessons learned - Quest

- A combination of microseismic monitoring solutions is very useful to reduce event location uncertainties and make use of the different technology advantages.
- Focal depth uncertainty will remain large if no deep sensors (around reservoir depth) are available.
- Location uncertainty increases with distance from monitoring well
 - As plume grows with time, event association will be increasingly difficult
- Using detailed information on additional phase arrivals from DAS could provide further improvement.

Conclusions

- During CCS operations: most important is event depth resolution to verify seal integrity, correct event association, and support reservoir characterization.
- Reservoirs are generally thinner than depth uncertainty from standard seismological methods. Therefore, additional constraints need to be exploited to improve depth resolution (e.g., later arrivals / multipathing).
- Good network planning:
 - Vertical aperture with borehole array(s) for depth resolution
 - > Azimuthal coverage for location accuracy and source parameter inversion
 - Monitoring adjustment with time may be necessary
- Real-time data stream and automatic processing can provide "traffic light" feedback to operations.
- Source parameters (b, $\Delta\sigma$) can provide hints of reservoir hydraulics, but require good calibration, large catalogs, and excellent network coverage.

Thank you for your attention!

This presentation has been produced with support from:

- The ACT3 project ENSURE (project No. 327317)
- the Climit program of GASSNOVA (project No. 616065)

The ENSURE project has been subsidized through ACT3, by RCN (Norway), Ademe (France), and ERA (Canada).

I would like to thank our many collaborators from these projects!

