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Biot and Skempton coefficients govern HM rock behavior
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• Effective stress Δ𝜎′ controls deformation of 
saturated porous materials because part of the 
total load Δ𝜎 acts on the fluid pressure 𝛥𝑝

• In undrained conditions (or in the short-time), an 
increase in load (total stress, Δ𝜎) causes a 
proportional increase in fluid pressure Δ𝑝

• The product 𝛂 𝑩 defines the impact of an applied 
load on the solid skeleton, and thus the material 
deformation, under undrained conditions. 

Δ𝑝 = 𝑩Δ𝜎

Skempton coefficient 𝑩

𝜎′ = 𝜎 − 𝛂 𝑝
Δ𝜎′ = Δ𝜎 − 𝛂 Δ𝑝

Biot coefficient 𝛂

Δ𝜎′ = (1 − 𝛂𝑩)Δ𝜎

Modified from Lemieux et al. (JGR, 2008)

Increase of total 

stressFluid pressure 
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Overpressure 

propagates

Ellsworth (Science, 2013)
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Some details about the poroleastic coefficients (*)

• Biot coefficient 𝛂 reflects the effects of pore fluid pressure on the 
solid matrix

• It depends on the petrophysical properties of the solid skeleton at 
the microscale

• Skempton coefficient 𝑩 defines the pressure variation in response to 
total stress variation under undrained conditions

• It depends on rock and fluid properties at bulk scale

• They range between 0 and 1, being ≈ 1 in highly compressible 
materials (e.g., soils), and < 1 in stiff formations (e.g., crystalline 
rocks);

• They can be directly or indirectly measured in the lab, or they can 
be calculated from known properties through theoretical expressions 
valid for homogeneous isotropic media
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𝜎′ = 𝜎 − 𝛂 𝑝

𝛼 =
𝜕𝜎𝑚
𝜕𝑝

𝑉

𝐵 =
𝜕𝑝

𝜕𝜎𝑚 𝜁

Unjacketed testJacketed test

* Refs: Biot 1941; see also: Detournay & Cheng 1993; Cheng 2016; Coussy 2004



The coefficients largely depend on pores and their shape 
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Experimental data 
(Selvadurai, Geosciences, 2021) 

Theoretical estimations
(Selvadurai & Suvorov, Sci. Rep., 2020) 

Numerical estimations
(Modified from Tan & Konietzky, Tecton., 2014)

𝛼 increases with porosity 𝛼 increases with elongated pores and cracks 𝛼 is anisotropic

† studies limited to sample scale
What about large-scale fractured rocks?



Field-scale problems require estimating effective poroelastic 
coefficients referring to the rock mass

Proposed estimations for fractured rocks:

• Poroelasticity theory for anisotropic porous media (e.g., Cheng1997+ extensive literature)

• Equivalent stiffness for fractured rocks + traditional theoretical expressions (e.g., Wong 2017; Selvadurai et al.  

2019; Selvadurai and Suvorov 2020; Berryman 2012)

• Numerical estimations from observed response (e.g., Chen et al. 2020)

• Volume-weighted averaging (e.g., Tuncay&Corapcioglu 1995; Tan&Konietsky 2014)

Limited to sample scale

Limited to 2D

Not validated

No consideration of fracture orientation

No consideration of fracture volume

No porosity of intact rock
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Defining equivalent Biot and Skempton coefficients for a 
single saturated fracture

Assumptions: 
• Fracture with aperture 𝑒 is fluid-filled

• Fracture characteristics (aperture, stiffness) are homogeneous in the plane

• The resulting force is perpendicular to the average fracture plane (deviations due to asperities cancel out)

• Fracture behavior is locally linear elastic with normal stiffness 𝜿𝑵

Fracture Biot coefficient 

• 𝛼𝑓 = 1 for open fractures, while 𝛼𝑓 = 0 for sealed fractures.

Fracture Skempton coefficient 

• analytically derived considering a volumetric approach  𝐵𝑓 = 𝛽𝑒𝜅𝑁 + 𝛼𝑁
−1,

𝛽= fluid compressibility
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Δ𝜎𝑁
′ = Δ𝜎𝑁 − 𝛼𝑓Δ𝑝

Δ𝑝 = 𝐵𝑓Δ𝜎𝑁

𝜎𝑁 = normal stress

Δ𝑒

𝜎𝑁
′

𝜅𝑁



Conceptual model to define equivalent Biot and Skempton 
coefficients for a saturated fractured rock mass
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 Equivalent coefficients are those that control the effective deformation. 

 They are derived by comparing the total volume deformations under an applied incremental 

stress tensor 𝚫𝛔∗ and different hydraulic conditions. 

𝛼 =
𝜀 − 𝜀

′

𝜀

Δ𝜎𝑚
∗

Δ𝑝∗

𝐵 =
𝜀 − 𝜀

′′

𝜀

1

𝛼

Δ𝜎𝑚
′ = Δ𝜎𝑚 − 𝜶Δ𝑝,  equivalent Biot coeff. 

Δ𝑝 = 𝑩Δ𝜎𝑚 , equivalent Skempton coeff. 

Δ𝜎𝑚= average stress

𝜀

Δ𝜎𝑚
∗ = 

𝜀
′′

1−𝛼 𝐵 Δ𝜎𝑚
∗

𝜀

Δ𝜎𝑚
∗ =

𝜀
′

Δ𝜎𝑚
∗ −𝛼 Δ𝑝∗𝑁

𝑓

applied 
𝚫𝛔∗

Dry
𝒑 = 𝟎

𝑁

𝑓𝑝∗

Drained
imposed 𝚫𝒑∗

applied 
𝚫𝛔∗

Undrained
𝚫𝒑 = 𝑩 𝚫𝝈𝒎

∗

applied 
𝚫𝛔∗ 𝑁

𝑓
𝑝 = 𝐵𝜎∗

Biot coef

Skempton coef

𝜀 𝜀′ 𝜀′′



Defining equivalent Biot and Skempton coefficients for a saturated 
fractured rock mass
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Δ𝜎𝑚
′ = Δ𝜎𝑚 − 𝜶Δ𝑝, Biot coeff. 

Δ𝑝 = 𝑩Δ𝜎𝑚 , Skempton coeff. 

Δ𝜎𝑚= average stress

Total volume variation Δ𝑉 = Δ𝑉𝑟 + σ𝑓 Δ𝑉
𝑓

(non-interaction approximation - Grechka & Kachanov, 2006))

𝛼 =
𝛾𝑟𝛼𝑟+σ𝑓 𝛾

𝑓𝛼𝑓

𝛾𝑟+σ𝑓 𝜃
𝑓𝛾𝑓

𝐵 =
𝛾𝑟𝛼𝑟𝐵𝑟 +σ𝑓 𝛾

𝑓𝜃𝑓𝛼𝑓𝐵𝑓

𝛾𝑟𝛼𝑟+σ𝑓 𝛾
𝑓𝛼𝑓

• 𝜸-weighted averages

• Depend on the load 𝚫𝛔Intact rock (porous) 

fracture size

and aperture

fracture normal 

stiffness

Initial and applied 

stress on the fracture

𝜃𝑓 =
𝚫𝜎𝑁

𝑓

𝚫𝜎𝑚
=

𝑛𝑓
𝑇𝚫𝛔 𝑛𝑓

𝑡𝑟(𝚫𝛔)/𝟑

𝚫𝜎𝑁
𝑓

𝛾𝑓 , 𝛼𝑓 , 𝐵𝑓

𝛾𝑟 , 𝛼𝑟, 𝐵𝑟

Fracture network

𝛾𝑖 = Δ𝑉𝑖/ 𝚫𝝈∗

contribution of element 𝑖 to the total deformation
(De Simone et al., RMRE 2023)

𝛼 =
𝜀 − 𝜀

′

𝜀

Δ𝜎𝑚
∗

Δ𝑝∗

𝐵 =
𝜀 − 𝜀

′′

𝜀

1

𝛼



Validated against numerical results (3DEC) 
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• Fractures and rock blocks are explicitly represented, 
and their HM behavior simulated

• Distinct Element Method

• Assembly of deformable blocks limited by fracture planes

• Elastic behavior inside fracture plane

• Loaded by stress

• The three hydraulic conditions are reproduced, and 
the total volume variations estimated

• Different fracture settings 

• Stress is alternatively applied in the 3 directions

Parallel, infinite Random, finite

𝑁

𝑓

applied 
𝚫𝛔∗

Dry

𝒑 = 𝟎

𝑁

𝑓𝑝∗

Drained

imposed 𝚫𝒑∗

applied 
𝚫𝛔∗

Undrained

𝚫𝒑 = 𝑩 𝚫𝝈𝒎
∗

applied 
𝚫𝛔∗ 𝑁

𝑓
𝑝 = 𝐵𝜎∗

Biot coef

Skempton coef

𝜀 𝜀′ 𝜀′′

(De Simone et al., RMRE 2023)



Variability of equivalent coefficients when fracture aperture 
(𝑒) and stiffness (𝜅𝑁) are constant (i)
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𝑝32

𝜶 and 𝑩 increase with fracture density 

because fractures increase the overall 

rock mass deformability

smaller effective stresses Δ𝜎′ ∝ 1 − 𝛼 𝐵

smaller deformations?

𝛼 𝐵

Intact rock

Neglecting fractures leads to incorrect 

estimations of the HM behavior

𝛼 =
𝛾𝑟𝛼𝑟+σ𝑓 𝛾

𝑓𝛼𝑓

𝛾𝑟+σ𝑓 𝜃
𝑓𝛾𝑓

𝐵 =
𝛾𝑟𝛼𝑟𝐵𝑟 +σ𝑓 𝛾

𝑓𝜃𝑓𝛼𝑓𝐵𝑓

𝛾𝑟𝛼𝑟+σ𝑓 𝛾
𝑓𝛼𝑓

෍

𝑓

𝛾𝑓 =෍

𝑓

𝑆𝑓

𝜅𝑁
𝑓
= 𝑝32 𝜅𝑛,𝑓

−1



Variability of equivalent coefficients when fracture aperture 
(𝑒) and stiffness (𝜅𝑁) are constant (ii)
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(De Simone et al., RMRE 2023)

𝜶 and 𝑩 depend on fracture stiffness 

and aperture 

o They both decrease with 

increasing fracture stiffness

o Limited effects of aperture – 𝐵
decreases with increasing 

fracture aperture

𝑝32

𝛼 𝐵

Uncertainty in characterizing 

the HM behavior



Variability of equivalent coefficients when fracture aperture (𝑒) 
and stiffness (𝜅𝑁) are constant (iii)
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Δ𝜎

𝜶 and 𝑩 depend on fracture orientation 

with respect to applied stress because 

orientation affects fracture contribution 

to the overall deforming capacity

𝑩 is larger when the applied stress acts 

normal to the fractures

The opposite for 𝜶 but very limited

Fracture density

Intact rock

HM behavior is strongly 

anisotropic

𝛼 𝐵



But fracture aperture (𝑒) and stiffness (𝜅𝑁) are stress-dependent

Silvia De Simone 14

Fracture aperture decreases non-linearly with 

increasing normal stress, because fracture stiffness 

increases as the normal stress increases

• hyperbolic (Goodman, 1976; Bandis et al., 1983)

• logarithmic (Evans et al., 1992) 

• exponential law (Liu et al., 2012)

irreducible aperture

Maximum aperture at zero stress

Fracture aperture and stiffness depend on:

depth In-situ stress 

tensor

Fracture orientation

Δ𝜎𝑁 stiffnessaperture

Fracture closure law

Particularly affects the
coefficients (they decrease
with increasing stiffness)



Fracture orientation plays two effects
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Fracture density

𝛼 : The effect of the orientation on Δ𝜎𝑁 is 

amplified by its effect on 𝜅𝑁

𝐵 : The effect of the orientation on Δ𝜎𝑁 is 

counterbalanced by its effect on 𝜅𝑁

Initial stress

The opposite

Initial stress

• 𝜶 and 𝐵 depend on fracture orientation with respect 

to applied stress Δ𝜎

• 𝜶 and 𝐵 depend on fracture orientation with respect 

to initial stress

Δ𝜎

Intact 

rock

𝛼 𝐵

HM behavior is even more anisotropic

CONSTANT APERTURE AND STIFFNESS 

STRESS-DEPENDENT APERTURE AND STIFFNESS 



In undrained conditions, the effective stress is minimized for: 
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Normal faulting

Reverse faulting

No stress-dependent

 Horizontal fractures under reverse 

faulting

 Fractures with dip=60º under

normal faulting (which are the

most critical for failure!)

(De Simone et al., under review)



Fracture aperture (𝑒) and stiffness (𝜅𝑁) are size-dependent
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(Worthington, GSL, 2007)

Limit to 𝑒

𝜅𝑁
−1 ∝ 𝑒 → 𝜿𝑵 ∝ ℓ−𝝀

(Renshaw & Park, Nature, 1997)

𝒆 ∝ ℓ𝝀

The distribution of fracture 

size follows a power law
𝑛 ℓ ∝ ℓ−𝜔

ℓ(𝑚)

𝑛
ℓ
(𝑚

−
3
)

𝜔

Large fractures are more 

compliant and open 

෍

𝑓

𝛾𝑓 =෍

𝑓

𝑆𝑓

𝜅𝑁
𝑓
∝ නℓ2+𝜆 𝑛 ℓ 𝑑ℓ



Size distribution impacts the coefficients
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More small fractures

𝛼 and 𝐵 larger in systems populated by a few large 

fractures than in systems with many small fractures 

(for equivalent 𝑝32)

𝑛 ℓ ∝ ℓ−𝜔

ℓ(𝑚)

𝑛
ℓ
(𝑚

−
3
)

𝜔

(De Simone et al., under review)
HM behavior determined by 

fracture size organization 

Assuming all fractures have the
same orientation

𝜿𝑵 ∝ ℓ−𝝀

𝒆 ∝ ℓ𝝀
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• Disregarding fractures lead to incorrect predictions:

both coefficients increase with fracture density

• Strong anisotropy: Biot and Skempton coefficients

depend on the orientation of the applied load, the

initial stress and the fracture orientations

• Impact of the distribution of fracture size: Biot and

Skempton coefficients are larger in systems populated

by a few large fractures

• The fracture contribution is larger in systems containing

large fractures oriented parallel to the largest principal
initial stress and normal to the applied stress

• Uncertainties arise from parameters that are not yet

constrained by measurements

Take-home messages

𝑝32

Applied 

load

Initial 

stress



Implications for HM behavior and induced seismicity
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Δ𝜎′ = 1 − 𝛼 𝐵 Δ𝜎

Ice sheet

subglacial periglacial

Δ𝜎

Δ𝑝

Δ𝜎′ ∝ Δ𝑝

Δ𝑝

Δ𝜎

Δ𝜎

Δ𝜎′ = 1 − 𝛼 𝐵 Δ𝜎

No hydraulic 

connection

Change in loading conditions

Change in pressure

Change in loading conditions

Δ𝜎′ ≈ 𝛼 Δ𝑝

Δ𝜎𝑥
′ ≈ 𝛼𝑥 Δ𝑝

Δ𝜎𝑦
′ ≈ 𝛼𝑦 Δ𝑝

Change in pressure

Stay tuned!
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Thank you for your
attention!

Silvia De Simone

silvia.desimone@idaea.csic.es


