

On the equivalent Biot and Skempton coefficients of fractured rocks and their impact on the HM behavior of geological media

Silvia De Simone

Spanish National Research Council (IDAEA-CSIC), Spain

GEoREST Workshop on Induced Seismicity 11-13 March 2024, Palma

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Financiado por la Unión Europea NextGenerationEU

Thanks to collaborators!

Philippe

Dav

Caroline Darcel

Hossein A. Kasani

Biot and Skempton coefficients govern HM rock behavior

SI

- Effective stress $\Delta \sigma'$ controls deformation of saturated porous materials because part of the total load $\Delta \sigma$ acts on the fluid pressure Δp
- In **undrained conditions** (or in the short-time), an increase in load (total stress, $\Delta \sigma$) causes a proportional increase in fluid pressure Δp
- The product αB defines the impact of an applied load on the solid skeleton, and thus the material $\Delta \sigma' = (1 \alpha B) \Delta \sigma$ deformation, under undrained conditions.

$$\sigma, \Delta \sigma \qquad \sigma, \Delta \sigma \qquad \sigma, \Delta \sigma \qquad \sigma', \Delta \sigma'$$

$$Dry \qquad Dry \qquad Saturated$$

Some details about the poroleastic coefficients (*)

- $\sigma' = \sigma \alpha p$ Biot coefficient α reflects the effects of pore fluid pressure on the • solid matrix
- It depends on the petrophysical properties of the solid skeleton at the microscale
- Skempton coefficient **B** defines the pressure variation in response to total stress variation under undrained conditions
- It depends on rock and fluid properties at bulk scale
- They range between 0 and 1, being \approx 1 in highly compressible materials (e.g., soils), and < 1 in stiff formations (e.g., crystalline rocks);
- They can be directly or indirectly measured in the lab, or they can be calculated from known properties through theoretical expressions valid for homogeneous isotropic media

* Refs: Biot 1941; see also: Detournay & Cheng 1993; Cheng 2016; Coussy 2004

 $B = \left(\frac{\partial p}{\partial \sigma_m}\right)_z$

The coefficients largely depend on pores and their shape

 α increases with **porosity**

α increases with **elongated** pores and cracks

 α is anisotropic

Experimental data (Selvadurai, Geosciences, 2021)

(Selvadurai & Suvorov, Sci. Rep., 2020)

Numerical estimations (Modified from Tan & Konietzky, Tecton., 2014)

† studies limited to sample scale

What about large-scale fractured rocks?

Field-scale problems require estimating effective poroelastic coefficients referring to the rock mass

Proposed estimations for fractured rocks:

- Poroelasticity theory for anisotropic porous media (e.g., Cheng1997+ extensive literature)
- Equivalent stiffness for fractured rocks + traditional theoretical expressions (e.g., Wong 2017; Selvadurai et al. 2019; Selvadurai and Suvorov 2020; Berryman 2012)
- Numerical estimations from observed response (e.g., Chen et al. 2020)
- Volume-weighted averaging (e.g., Tuncay&Corapcioglu 1995; Tan&Konietsky 2014)

Limited to sample scale
Limited to 2D
Not validated
No consideration of fracture orientation
No consideration of fracture volume
No porosity of intact rock

Defining equivalent Biot and Skempton coefficients for a single saturated fracture

Assumptions:

- Fracture with aperture e is fluid-filled
- Fracture characteristics (aperture, stiffness) are homogeneous in the plane
- The resulting force is perpendicular to the average fracture plane (deviations due to asperities cancel out)
- Fracture behavior is locally linear elastic with **normal stiffness** κ_N

 σ_N = normal stress

Fracture Biot coefficient

• $\alpha^f = 1$ for open fractures, while $\alpha^f = 0$ for sealed fractures.

Fracture Skempton coefficient

• analytically derived considering a volumetric approach $B^f = (\beta e \kappa_N + \alpha_N)^{-1}$, $\beta =$ fluid compressibility Conceptual model to define equivalent Biot and Skempton coefficients for a saturated fractured rock mass

 $\Delta \sigma'_m = \Delta \sigma_m - \overline{\alpha} \Delta p$, equivalent Biot coeff.

 $\Delta p = \overline{B} \Delta \sigma_m$, equivalent Skempton coeff. $\Delta \sigma_m$ = average stress

- Equivalent coefficients are those that control the effective deformation.
- They are derived by comparing the **total volume deformations** under an applied incremental stress tensor $\Delta \sigma^*$ and different hydraulic conditions.

Defining equivalent Biot and Skempton coefficients for a saturated fractured rock mass

Total volume variation $\Delta V = \Delta V^r + \sum_f \Delta V^f$

(non-interaction approximation - Grechka & Kachanov, 2006))

Intact rock (porous)

 γ^r, α^r, B^r

 $\gamma^i = \Delta V^i / |\Delta \sigma^*|$ contribution of element *i* to the total deformation

Fracture network

Validated against numerical results (3DEC)

- Fractures and rock blocks are explicitly represented, and their HM behavior simulated
 - Distinct Element Method
 - Assembly of deformable blocks limited by fracture planes
 - Elastic behavior inside fracture plane
 - Loaded by stress
- The three hydraulic conditions are reproduced, and the total volume variations estimated
- Different fracture settings
- Stress is alternatively applied in the 3 directions
 - Parallel, infinite

(De Simone et al., RMRE 2023)

Variability of equivalent coefficients when fracture aperture (e) and stiffness (κ_N) are constant (i)

Variability of equivalent coefficients when fracture aperture (e) and stiffness (κ_N) are constant (ii)

$\overline{\alpha}$ and \overline{B} depend on fracture stiffness and aperture

- They both decrease with increasing fracture stiffness
- Limited effects of aperture \overline{B} decreases with increasing fracture aperture

Uncertainty in characterizing the HM behavior

Variability of equivalent coefficients when fracture aperture (e) and stiffness (κ_N) are constant (iii)

 $\overline{\alpha}$ and \overline{B} depend on fracture orientation with respect to applied stress because orientation affects fracture contribution to the overall deforming capacity

 \overline{B} is larger when the applied stress acts normal to the fractures

The opposite for $\overline{\alpha}$ but very limited

Fracture density

HM behavior is strongly anisotropic

But fracture aperture (e) and stiffness (κ_N) are stress-dependent

Fracture aperture decreases **non-linearly** with increasing normal stress, because fracture stiffness increases as the normal stress increases

- hyperbolic (Goodman, 1976; Bandis et al., 1983)
- logarithmic (Evans et al., 1992)
- exponential law (Liu et al., 2012)

Fracture aperture and stiffness depend on:

Fracture orientation plays two effects

CONSTANT APERTURE AND STIFFNESS

• $\overline{\alpha}$ and \overline{B} depend on fracture **orientation** with respect to **applied** stress $\Delta \sigma$

STRESS-DEPENDENT APERTURE AND STIFFNESS

• $\overline{\alpha}$ and \overline{B} depend on fracture **orientation** with respect to **initial** stress

 $\overline{\alpha}$: The effect of the orientation on $\Delta \sigma_N$ is **amplified** by its effect on κ_N

 \overline{B} : The effect of the orientation on $\Delta \sigma_N$ is **counterbalanced** by its effect on κ_N

Initial stress

The opposite

HM behavior is even more anisotropic

In undrained conditions, the effective stress is minimized for:

- Horizontal fractures under reverse faulting
- Fractures with dip=60° under normal faulting (which are the most critical for failure!)

Fracture aperture (e) and stiffness (κ_N) are size-dependent

Large fractures are more compliant and open

The distribution of fracture size follows a power law

$$\sum_f \gamma^f = \sum_f \frac{S^f}{\kappa_N^f} \propto \int \ell^{2+\lambda} \, n(\ell) d\ell$$

Size distribution impacts the coefficients

Assuming all fractures have the same orientation

 $\kappa_N \propto \ell^{-\lambda}$ $e \propto \ell^{\lambda}$

 $\overline{\alpha}$ and \overline{B} larger in systems populated by a few large fractures than in systems with many small fractures (for equivalent p_{32})

Take-home messages

- Disregarding fractures lead to incorrect predictions: both coefficients increase with fracture **density**
- Strong **anisotropy**: Biot and Skempton coefficients depend on the **orientation** of the applied load, the initial stress and the fracture orientations
- Impact of the distribution of **fracture size**: Biot and Skempton coefficients are larger in systems populated by a few large fractures
- The fracture contribution is larger in systems containing large fractures oriented parallel to the largest principal initial stress and normal to the applied stress
- **Uncertainties** arise from parameters that are not yet constrained by measurements

Thank you for your attention!

Silvia De Simone silvia.desimone@idaea.csic.es

MINISTERIO DE CIENCIA, INNOVACIÓN **Y UNIVERSIDADES**

la Unión Europea NextGenerationEU

AGENCIA ESTATAL DE INVESTIGACIÓ